Some shapes are so valuable, we must preserve them

Every company has an image all of its own. We at ARENZ GmbH have continuously endeavoured to secure product quality and run a customer oriented business.

We have applied our accumulated know how efficiently to the varied areas of manufacturing and regenerating of wear parts in plastification units and also to the delivery of complete extruder units. First class products are the result of our labour and strategy.

The development of new technologies and products as well as a thorough knowledge of materials are the foundation of our innovative service to the customer.

Let us show you the solution to your specific requirements. The present catalogue will give you an impression of our performance capabilities.

Please contact us.

arenz GmbH - Plastifizier- und Verschleiß-Technik Heidestraße 5 - D-53340 Meckenheim (Industriepark Kottenforst) Telefon 0 (49) 22 25 / 999 - 0 - Telefax 0 (49) 22 25 / 999 - 250 http://www.arenz-gmbh.de - e-mail: info@arenz-gmbh.de

Process Optimisation		4 - 5
Screws	2.1 Screw Manufacturing 2.2 Screw Regeneration	6-7 8-9
Cylinders	3.1 Cylinder Manufacturing3.2 Arnit-Alloy Bimetal Cylinders3.3 Cylinder Regeneration	10 - 11 12 - 13 14 - 15
Non-return flow valves	Manufacturing/Regeneration	16-17
Material selection		18-19
Extruders		20-21
Directions to the factory		22

1. Process Optimisation

We offer you screw geometry optimised to suit your particular processing task.

Benefit from our many years of experience in the construction and design of screws for injection moulding and extrusion processes.

Using REX (computer-aided extruder design) and PSI (Paderborn injection moulding simulation) software, ARENZ has the facilities to offer quick and meaningful computeraided optimisation. These simulation programs form an efficient complement to the many years of experience ARENZ has gained in the design of screw geometry. The REX and PSI simulation programs were developed with the aid of extensive mathematical and physical models in a joint project between the Institute of Plastics Engineering (KTP) in the Mechanical Engineering faculty of the University of Paderborn and reputable mechanical engineering companies and manufacturers of raw materials. By employing rapid computational algorithms and approximation solutions, the software allows very short calculating times. Influencing variables and their effects can be recognised, evaluated and assessed very quickly. Statements are obtained on the course of pressure, throughput characteristics, melting behaviour, homogeneity, performance course, shear effects, mixing ratios and wall shear stress.

This cost-free service is particularly interesting in connection with the extensive experience acquired by ARENZ in protection against wear.

This combination makes it possible to produce screws tailor-made to a particular application.

Standard screws usually fail to meet all requirements

Optimisation is attained as follows:

- 1) Description of the problem
- 2) Recording of the actual states of all qualityrelevant parameters. We draw up a checklist to help you in this.
- 3) The actual-state recording is then simulated and the process is readjusted by software.
- 4) Calculation of the new geometry
- 5) We record the results for you in informative diagrams, such as e.g. on pressure, melting behaviour, the course of temperature and mixing ratios.

Our optimisation is aimed at attaining production-appropriate screw geometry which meets your requirements for increased throughput, good melting quality, wear prevention and cost-effective service life.

Adjacent example from actual practice:

Injection moulding screw dia 100 mm

Tasks:

Improved dyeing and enhanced plastification performance from 94g/s to 108 g/s.

Raw materials: HDPE, PP, PS

2.1 Screw Manufacturing

■ In the field of plastics processing, technical progress demands a continuous improvement of products and processing in order to be able to offer the customer the newest solutions.

The high quality of our screws is maintained by modern, efficient processing methods and know how. Depending on your intended application we can place a broad range of products, geometries and materials at your disposal. In order to produce an optimal screw for our customers, we discuss the requirements and necessary profile and manufacture a tailor-made screw for your particular application.

We can deliver screws à la carte

Diameter:	18 to 300 mm	
Length:	250 to 6.000 mm	
Geometry:	 according to your drawings according to sample according to our drawings according to our calculations according to our suggestion single and multi-thread progressive core and pitch two and multi-zone screws degassing screws mix and shear zones 	
Materials:	We have a broad range of materials at our disposal. Material selection depends on your requirements. Please see material selection in chapter 5 for further details.	
Surface treatment:	The requirements on the screw surface by the plastics to be processed are met through the most modern surface treatment methods.	
	For example: the screw surface is nitrated, ionitrated, chromium plated or hardened.	

Some shapes are so valuable, we must preserve them

2.2 Screw Regeneration

Friction between the screw tops and the internal wall of the cylinder causes wear. This wear is made worse by plastic additives such as glass fibre, pigments, flame retardants and other additives. Also, corrosive wear may occur. A newly developed Arnit hard-facing process has enabled us to succeed in regenerating worn screws by applying a wear resistant hard-faced deposit. This process produces a perfect metallic bond between the base material and the Arnit hard-faced deposit.

The Arnit hard-faced deposit is corrosion and wear resistant. Arnit 12, for example, reaches a hardness of approx. 50 HRC. Depending on the base material used, the screw is nitrated or ionitrated after hard-facing. During this application the base material acquires a surface hardness of approx. 800 to 1.100 HV 5.

During the hard-facing process hairline cracking may occur due to different thermal coefficients between the base material and the hard-faced deposit, especially in the case of larger screw diameters. This hairline cracking, arising in the hard-facing towards the central shaft, has no influence on the service life and the hard-facing will not chip off. So far, no negative effect of hairline cracking during screw operations has been observed. However, if the customer has any doubts whatsoever, we recommend the hardfacing with Arnit 6, which can be applied absolutely crack free. Before going ahead with the repair work, we measure the screw and check for any damage such as torsion. The customer receives a copy of this trial record.

3.1 Cylinder Manufacturing

■ High mechanical and thermal demands characterize the working conditions of modern cylinders. In order to endure the strenuous demands of everyday use for an extended period, it is necessary to possess a technically refined product manufactured from high quality material.

ARENZ uses a wide variety of design, material and surface treatment at the most modern work stations to manufacture its cylinders.

It's not magic, but there is more to our cylinders than meets the eye

Bore diameter: 18 to 300 mm Bore tolerance: H 7 surface roughness R_t 0.5 Outer cylinder diameter: 50 to 500 mm 250 to 6.000 mm Length: **Design:** - according to your drawings - according to sample - according to our drawings - according to our calculations - according to our suggestion - with forged-on flange - with welded flange - with screwed-on flange - with grooved feed bushing - with jacket cooling - with feed cooling - with spiral cooling - with degassing vent - with feed pocket Materials: We have a wide variety of materials at our disposal. The material is adjusted to your demands. Please see material selection in chapter 5 for further details. Surface treatment: We have adjusted to the demands, that the plastic to be processed places on the bore surface, by using the most modern surface treatment methods. For example: the bore surface is nitrated, ionitrated, chromium plated, hard-faced, hardened or the step is nitrated.

Also cylinders do need a centre

Modern technology deep-hole drill and honing centre.

Machining centre for cylinders in different versions.

When Arnit-Alloy and steel engage in a long term relationship, bi-metal cylinders are born with above average capabilities.

3.2 Arnit-Alloy bi-metal cylinders

■ The ARENZ research division is concerned with new and progressive manufacturing processes and products, material development and methods to improve quality. The Arnit-Alloy bi-metal cylinders are the result of our continuous efforts.

A high degree of form and exact positioning are tokens of a low friction and as much as possible distortion-free cylinder type. Our Arnit-Alloy bi-metal cylinders, available in various designs and materials, represent the latest findings of the technique.

Bore diameter:	18 to 300 mm
Bore tolerance:	H 7 rough depth R _t 0.5
Outer cylinder diameter:	50 to 500 mm
Length:	250 to 6.000 mm
Design:	 according to your drawings according to sample according to our drawings according to our suggestion according to our calculations with welded flange with screwed-on flange with grooved feed bushing with jacket cooling with feed cooling with spiral cooling with degassing vent with feed pocket

Arnit-Alloy	1	3	5
Hardness Rockwell HRC	64 - 67	52 - 56	63 - 65
Temperature range max.	≤ 350° C	≤ 500° C	≤ 400° C
Properties	abrasion resistant	corrosion resistant	abrasion and corrosion resistant

The thickness of the Arnit-Alloy lining lies between 2 and 3 mm, depending on bore diameter.

Additional applications of the Arnit-Alloy bimetal cylinders are as follows: chemical sludge pumps, food extruders, food transportation, bearing bushes, hydraulic cylinders.

If you would like to know what kind of cylinders are better than new ones, an example occurred to us

3.3 Cylinder Regeneration

■ The cylinder regeneration process restores worn cylinders to a new condition. Because of high quality work and surface hardening processes, that we at Arenz have developed and optimized, and due to our long term experience, we are able to regenerate a cylinder to a state where it will even outperform new products in terms of quality and precision. Our basic programme offers two different regeneration processes. ■

Process 1:

The cylinder is cleanly honed throughout and then undergoes a hardening process. (Bore tempering H7). The screw diameter is manufactured to fit the cylinder bore. Nozzle tip and non-return flow valve are adjusted or newly manufactured. Screw Manufacturing: see chapter 2.1 Screw Regeneration: see chapter 2.2 Non-Return Flow Valve: see chapter 4.

Screw Diameter		Cylinder Wear
from mm	up to mm	max. mm
30	40	1,0
40 50 60	50	1,0
50	50 60	1,0
60	80	1,0
80	100	1,5
100	120	1,5
120	300	2.0

In terms of costs, we can recommend this cylinder regeneration process as long as wear does not exceed 1 mm.

Process 2:

The cylinder is fitted with a sleeve and hardened in the section of the non return flow valve that is subject to the highest level of wear. Depending on the application, the drawback of possible streaks can be neglected.

d₁ (mm)	D ₂ (mm)	L (mm)
18	29	100
22	33	120
25	36	150
30	41	200
35	46	200
40	51	350
45	56	350
50	61	350
55	66	420
60	71	420
70	85	550
80	95	550
90	105	600
100	115	600

Material: Arnit 8, Arnit 4, Arnit-Alloy 5. For details concerning material selection see chapter 5.

4. Non-return flow valves Manufacturing

The non-return flow valve is the part of the plasticizing unit that is subject to the greatest stress:

- temperature up to approx. 500°C
- pressure up to approx. 2500 bar
- high wear of faying surfaces
 high torque load

The valve function of the non-return flow valve has to meet the following requirements:

- long service life
- no damage to the polymers that are processed
- minimal wear of the plasticizing cylinder and screw
- low flow resistance
- fast closure

An optimal solution requires a careful design of assembly components and matching of appropriate materials. For normal stress and wear we recommend our Arnit 8 non-return flow valve.

Where quality and function flow together

	Normal	Wear resistant	Extremely wear resistant
Тір	Arnit 8	hard-faced w/ Arnit 12	hard-faced w/Arnit 83
Retaining ring	Arnit 8	Arnit 2379	APM 1
Gasket	Arnit 8	Arnit 8	Arnit 8

Material selection see chapter 5.

Regeneration

The regeneration process of the non-return flow valve includes the following:

- the tip of the contact surface is surface treated with Arnit 12 or Arnit 83
- the retainer ring is manufactured from Arnit 8
- the gasket is manufactured from Arnit 8 $\,$

If the wear of the tip permits, regeneration may be recommended if the diameter > 40 mm.

5. Material selection

Arnit 8	Material analysis: Hardening process: Hardness: Application: Service life:	C: 0,3 - 0,37 / Si: 0,3 / Mn: 0,55 / P: 0,03 / S: 0,035 / Cr: 1,5 - 1,8 / Mo: 0,15 - 0,25 / Ni: 0,85 - 1,15 / Al: 0,8 - 1,2 long-term dry nitrating 900 - 950 HV screws, cylinders, non-return flow valves 1, related to the processing of polyamide 6.6 with 30 % glass fibre
Arnit 9	Material analysis: Hardening process: Hardness: Application: Service life:	C: 0,26-0,34 / Si: 0,40 / Mn: 0,4-0,7 / P: 0,025 / S: 0,03 / Cr: 2,3-2,7 / Mo: 0,15-0,25 nitrating 800-850 HV screws, cylinders, non-return flow valves 1, related to Arnit 8
Arnit 4	Material analysis: Hardening process: Hardness: Application: Service life:	C: 0,33 - 0,43 / Si: 1,0 / Mn: 1,0 / P: 0,03 - 0,045 / Cr: 15,5 - 17,5 / Mo: 1,0 - 1,3 / Ni: 1,0 ionitrating 1000 - 1100 HV screws, cylinders, non-return flow valves (corrosion resistant) about 2, related to Arnit 8
Arnit 23	Material analysis: Hardening process: Hardness: Application: Service life:	C: 0,37 - 0,43 / Si: 0,9 - 1,2 / Mn: 0,3 - 0,5 / P: 0,03 / S: 0,03 / Cr: 4,8 - 5,5 / Mo: 1,2 - 1,5 / V: 0,9 - 1,1 oil hardening 52 HRC, additionally ionitrated to 1000 HV screws, barrel sleeves, nozzles about 3, related to Arnit 8
Arnit 2379	Material analysis: Hardening process: Hardness: Application: Service life:	C: 1,5 - 1,6 / Si: 0,3 - 0,5 / Mn: 0,3 - 0,5 / P: 0,035 / S: 0,035 / Cr: 11,5 - 12,5 / Mo: 0,6 - 0,8 / V: 0,9 - 1,1 oil hardening and ionitrating 63 HRC screws, retaining rings 5, related to Arnit 8
Arnit 6	Material analysis: Hardness: Application: Service life:	C: 1,1 / Cr: 28,0 / W: 4,5 / Co: balance and filler materials 40-42 HRC hard-facing of screws at their roots about 2, related to Arnit 8
Arnit 12	Material analysis: Hardness: Application: Service life:	C: 1,85 / Cr: 29,0 / W: 9,0 / Co: balance and filler materials 50 - 52 HRC hard-facing of screw top area about 2-3, related to Arnit 8

	Material analysis: Hardness: Application: Service life:	C: 0,7 / Cr: 12,5 / B: 2,75 / Si: 4,0 / rest Ni 52-55 HRC hard-facing of screw top area and contact surface of non-return flow valve tip about 3-4, related to Arnit 8
Arnit 80	Alloy type cobalt, ch Hardness: Application:	52 - 54 HRC hard-facing of screw top area, particularly in double-led extruder screws
	Service life:	about 3-4, related to Arnit 8
Arnit 83	Material analysis: Hardness: Application: Service life:	C: 2,2 / Cr: 2,0 / B: 1 / Wolframschmelzkarbid 35% 48-56 HRC hard-facing of screw top area and contact surface of non-return flow valve tip about 6-8, related to Arnit 8
Arnit 200	Arnit 200 is an extremely corrosion resistant nickel chrome molybdenum alloy for use in contact with flourine and chlorine.	
Arnit-Alloy 1	Alloy type Fe/Ni/B a Hardness: Application: Service life:	nd filler materials 64 - 67 HRC wear-resistant cylinder hard-facing about 5-10, related to Arnit 8
Arnit-Alloy 3	Alloy type Ni/Co/Cr. Hardness: Application: Service life:	/B and filler materials 52 - 56 HRC corrosion-resistant cylinder hard-facing about 4-8, related to Arnit 8
Arnit-Alloy 5	Alloy type Fe/Cr/Ni/ Hardness: Application: Service life:	B and filler materials 63 - 65 HRC wear and corrosion-resistant cylinder hard-facing about 6-8, related to Arnit 8
APM 1	Powder matallurgica Hardness: Application: Service life:	l HIP steel 60 - 64 HRC screws, cylinders, barrel sleeves, non-return flow valves, wear-resistant about 8-12, related to Arnit 8
APM 5	Powder matallurgica Hardness: Application:	

The ARENZ extruders have a broad range of applications

ARENZ extruders in the master line are efficient extruders with direct drive and groove feed bush changing system for processing all conventional raw materials and they can be used both as main extruders and also as ancillary extruders in large production lines.

Please demand our special brochure on extruders!

Arenz Laboratory Extruder

Our concept takes away all your worries

Arenz compact extruder for co-extrusion

For copying

Reply fax

To the technical sales department of Arenz GmbH 0 (049) 22 25 / 999 250

Please call m	e at tel	. no	
Please visit o	n:	/appro	a.m./p.m.
Company:			
Road:			
Postcode/tov	vn: _		
Mr/Ms			
Please send u regen	eration		
with prices a	nd deli [,]	very time for	Machine type
		L/ Dia L/ D	
others			
	-	"screw optimisation" check lis	st for

extruders

arenz GmbH - Plastifizier- und Verschleiß-Technik Heidestraße 5 - D-53340 Meckenheim (Industriepark Kottenforst) Telefon 0 (49) 22 25 / 999 - 0 - Telefax 0 (49) 22 25 / 999 - 250 http://www.arenz-gmbh.de - e-mail: info@arenz-gmbh.de